H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Thermal Engineering

Semester-wise syllabus for an M.Tech in Thermal Engineering

 

Semester 1: Core Foundations 

Courses: 

1. Advanced Thermodynamics 

   - Laws of thermodynamics, exergy analysis, gas mixtures, and real gas behavior. 

2. Heat Transfer 

   - Conduction, convection, radiation, phase change, and heat exchanger design (LMTD, NTU methods). 

3. Fluid Mechanics 

   - Viscous flow, boundary layer theory, turbulence modeling, and compressible flow. 

4. Energy Conversion Systems 

   - Power cycles (Rankine, Brayton, combined cycles), cogeneration, and waste heat recovery. 

5. Research Methodology 

   - Technical writing, statistical tools (MATLAB/Python), and experimental design. 

Labs: 

- Thermodynamics Lab (steam table experiments, calorimetry) 

- Heat Transfer Lab (thermal conductivity, heat exchanger performance) 

 

Semester 2: Advanced Topics & Electives 

Core Courses: 

1. Computational Fluid Dynamics (CFD) 

   - Finite volume method, turbulence modeling (k-ε, k-ω), and ANSYS Fluent/COMSOL simulations. 

2. Combustion Engineering 

   - Combustion kinetics, flame propagation, emission control (NOx, CO), and burner design. 

Electives (Examples): 

- Renewable Energy Systems (solar thermal, biomass, geothermal) 

- Refrigeration and Air Conditioning (vapor compression, absorption cycles) 

- Automotive Thermal Systems (engine cooling, battery thermal management) 

- Advanced HVAC Systems (energy-efficient building design) 

- Nuclear Engineering (reactor thermodynamics, safety protocols) 

Labs: 

- CFD Lab (ANSYS Fluent/COMSOL for heat transfer simulations) 

- Combustion Lab (flame speed measurement, emission analysis) 

 

Semester 3: Specialization & Project Work 

Electives (Examples): 

- AI/ML in Thermal Systems (predictive maintenance, optimization) 

- Sustainable Energy Systems (green hydrogen, carbon capture) 

- Cryogenic Engineering (liquefied gas storage, superconductors) 

- Microscale Heat Transfer (MEMS, nanofluids) 

- Energy Storage Systems (thermal batteries, molten salt storage) 

Project/Dissertation: 

- Phase 1: Topic selection (e.g., solar thermal plant optimization, battery cooling for EVs, combustion efficiency enhancement), literature review, and proposal. 

- Seminars: Presentations on trends like Industry 4.0 in thermal systems, waste-to-energy technologies, or AI-driven energy management. 

 

Semester 4: Thesis/Project Completion 

Thesis/Project:

- Full-time focus on simulations (CFD/FEA), experimental work (e.g., prototype testing), or industrial case studies. 

- Final documentation, viva voce defense, and collaboration with industries (e.g., Tata Power, NTPC, HVAC firms). 

Additional Components: 

- Industrial Internship (optional, with energy firms, automotive companies, or R&D labs like BHEL, ISRO). 

- Workshops: Training in Aspen Plus (process simulation), Thermal Desktop (spacecraft thermal modeling), or EnergyPlus (building energy analysis). 

Elective Tracks (Specializations): 

1. Energy Systems & Sustainability

   - Renewable integration, carbon-neutral technologies, and life-cycle assessment. 

2. Thermal System Design 

   - Heat exchangers, HVAC, and automotive thermal management. 

3. Advanced Combustion & Propulsion

   - Rocket engines, gas turbines, and low-emission combustion. 

4. Computational Thermal Engineering 

   - CFD, AI/ML-driven optimization, digital twins.   

More Related Course