H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Software Engineering

Semester-wise syllabus for an M.Tech in Software Engineering

 

Semester 1: Core Foundations 

Courses:

1. Advanced Software Engineering 

   - Software development lifecycle (SDLC), Agile/DevOps methodologies, and UML modeling. 

2. Data Structures and Algorithms 

   - Advanced algorithms (dynamic programming, graph theory), complexity analysis, and optimization. 

3. Object-Oriented Analysis and Design (OOAD) 

   - Design patterns (Singleton, Factory, Observer), SOLID principles, and UML diagrams. 

4. Database Management Systems

   - Relational/non-relational databases (SQL, NoSQL), query optimization, and distributed databases. 

5. Research Methodology 

   - Technical writing, statistical tools (Python/R), and literature review. 

Labs:

- Programming Lab (Python/Java/C++) 

- Database Design Lab (MySQL, MongoDB, PostgreSQL) 

 

Semester 2: Specialization & Electives

Core Courses:

1. Software Architecture and Design 

   - Microservices, RESTful APIs, cloud-native design, and architectural patterns (MVC, MVP). 

2. Software Testing and Quality Assurance 

   - Unit/integration testing, automation tools (Selenium, JUnit), and CI/CD pipelines. 

 

Electives (Examples):

- Cloud Computing (AWS, Azure, GCP) 

- Cybersecurity and Secure Coding 

- Machine Learning for Software Engineering 

- Mobile Application Development (Android/iOS, Flutter/React Native) 

- Distributed Systems (Kubernetes, Docker, Kafka) 

Labs: 

- DevOps Lab (Jenkins, Git, Docker, Kubernetes) 

- Full-Stack Development Lab (React, Node.js, Django) 

 

Semester 3: Advanced Electives & Project Work 

Electives (Examples): 

- AI/ML Integration in Software (MLOps, TensorFlow/PyTorch deployment) 

- Blockchain Development (Smart contracts, Ethereum, Hyperledger) 

- Big Data Engineering (Hadoop, Spark, data lakes) 

- Software Project Management (Scrum, Jira, risk analysis) 

- Quantum Software Engineering (Basics of quantum algorithms and Q#) 

Project/Dissertation: 

- Phase 1: Topic selection (e.g., AI-driven application, blockchain-based system, scalable cloud solution), literature review, and proposal. 

- Seminars: Presentations on trends like low-code platforms, ethical AI, or edge computing. 

 

Semester 4: Thesis/Project Completion 

Thesis/Project: 

- Full-time focus on developing and deploying a software product (e.g., SaaS application, ML model pipeline, IoT system). 

- Final documentation, viva voce defense, and deployment (cloud/on-premises). 

Additional Components: 

- Industrial Internship (optional, with tech firms like Microsoft, TCS, or startups). 

- Workshops: Training in AWS/Azure certification, ethical hacking, or AI deployment tools (MLflow, TFX). 

 

Elective Tracks (Specializations): 

1. AI-Driven Software Development

   - ML integration, AutoML, and AI-augmented coding tools (GitHub Copilot). 

2. Cloud and DevOps Engineering 

   - Cloud architecture, server less computing, and infrastructure-as-code (Terraform). 

3. Cyber security and Compliance 

   - Threat modeling, penetration testing, and GDPR/HIPAA compliance. 

4. Enterprise Software Systems 

   - ERP/CRM systems, middleware, and enterprise application integration.