H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Robotics

Semester-wise syllabus for an M.Tech in Robotics

 

Semester 1: Core Foundations

Courses: 

1. Robotics Mechanics and Kinematics

   - Rigid body motion, forward/inverse kinematics, Jacobians, and trajectory planning. 

2. Robot Dynamics and Control 

   - Lagrangian mechanics, PID control, state-space control, and torque-based control. 

3. Sensors and Actuators in Robotics 

   - IMUs, LiDAR, encoders, stepper/servo motors, and pneumatic systems. 

4. Artificial Intelligence for Robotics 

   - Path planning (A*, RRT), SLAM (Simultaneous Localization and Mapping), and reinforcement learning. 

5. Research Methodology

   - Technical writing, data analysis (Python/MATLAB), and experimental design. 

 

Labs:

- Robotics Simulation Lab (ROS, Gazebo, Webots) 

- Embedded Systems Lab (Arduino, Raspberry Pi, and motor control) 

 

Semester 2: Specialization & Electives 

Core Courses: 

1. Computer Vision for Robotics 

   - Feature detection, object recognition, OpenCV, and deep learning (CNN, YOLO). 

2. Human-Robot Interaction (HRI) 

   - Gesture recognition, natural language processing (NLP), and ethical considerations. 

 

Electives (Examples): 

- Autonomous Vehicles (perception, control, and sensor fusion) 

- Medical Robotics (surgical robots, prosthetics, and exoskeletons) 

- Industrial Robotics (PLC programming, collaborative robots/Cobots) 

- Soft Robotics (materials, bio-inspired design, and compliant mechanisms) 

- Swarm Robotics (multi-agent systems, consensus algorithms) 

Labs: 

- Computer Vision Lab (OpenCV, PyTorch/TensorFlow) 

- Industrial Robotics Lab (UR5, ABB, or Fanuc robot programming) 

 

Semester 3:

Advanced Electives & Project Work 

Electives (Examples): 

- AI/ML in Robotics (deep reinforcement learning, imitation learning) 

- Robotics in Space Exploration (rover design, orbital mechanics) 

- Bio-inspired Robotics (hexapods, drone swarms, underwater robots) 

- Robot Operating System (ROS) Advanced (ROS 2, navigation stack, MoveIt) 

- Ethics and Safety in Robotics (AI ethics, fail-safe mechanisms) 

 

Project/Dissertation:

- Phase 1: Topic selection (e.g., autonomous drone navigation, robotic arm control, AI-driven HRI), literature review, and proposal. 

- Seminars: Presentations on trends like edge AI for robots, quantum robotics, or ethical AI frameworks. 

 

Semester 4: Thesis/Project Completion 

Thesis/Project: 

- Full-time focus on hardware/software integration (e.g., building a robotic prototype, deploying AI models on edge devices). 

- Final documentation, viva voce defense, and potential collaboration with industries/research labs. 

Additional Components: 

- Industrial Internship (optional, with robotics firms like Boston Dynamics, ABB, or startups). 

- Workshops: Training in tools like SolidWorks (CAD), V-REP/CoppeliaSim, or ROS 2. 

 

Elective Tracks (Specializations):

1. Autonomous Systems 

   - Self-driving cars, drones, and AI-based navigation. 

2. Medical Robotics

   - Surgical automation, rehabilitation robotics, and nanorobotics. 

3. Industrial Automation

   - Collaborative robots, digital twins, and Industry 4.0 integration. 

4. AI-Driven Robotics 

   - Reinforcement learning, neural networks for perception/control. 

More Related Course