H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Remote Sensing (RS) and GIS

Semester-wise syllabus outline for an M.Tech in Remote Sensing (RS) and GIS

 

Semester 1:

 Core Fundamentals 

1. Principles of Remote Sensing 

   - Electromagnetic spectrum, sensor systems (optical, thermal, LiDAR), satellite platforms (Landsat, Sentinel, MODIS), image acquisition. 

2. Geographic Information Systems (GIS) Fundamentals

   - Spatial data models (vector/raster), coordinate systems, geodatabases, topology, basic geoprocessing. 

3. Digital Image Processing 

   - Image enhancement, classification (supervised/unsupervised), spectral indices (NDVI, NDWI), accuracy assessment. 

4. Remote Sensing Physics & Radiometry 

   - Atmospheric correction, reflectance/emissivity, scattering mechanisms, radiometric calibration. 

5. Lab 1: Basic RS & GIS Tools 

   - Hands-on with ERDAS Imagine, ArcGIS/QGIS, ENVI; digitization, layer stacking, simple classification. 

 

Semester 2:

Advanced Techniques & Applications 

1. Spatial Databases & Web GIS 

   - PostgreSQL/PostGIS, spatial SQL, cloud-based GIS (Google Earth Engine), REST APIs, GeoServer. 

2. Microwave Remote Sensing & SAR 

   - Synthetic Aperture Radar (SAR) principles, interferometry (InSAR), polarimetry, applications in disaster monitoring. 

3. Geospatial Data Analysis 

   - Spatial statistics (autocorrelation, kriging), machine learning for RS (Random Forest, CNNs), time-series analysis. 

4. Elective 1 (e.g., Hyperspectral Remote Sensing or Urban Planning & Smart Cities) 

5. Lab 2: Advanced Applications 

   - SAR processing (Sentinel-1 in SNAP), LiDAR point cloud analysis, Python scripting (GDAL, Rasterio). 

 

Semester 3:

Specialization & Project Work 

1. Elective 2 (e.g., Climate Change Studies or Disaster Management) 

2. Elective 3 (e.g., Machine Learning in RS or Agricultural Remote Sensing) 

3. Geospatial Project Management 

   - SDLC for GIS projects, cost-benefit analysis, ethical considerations (data privacy, open-source vs. proprietary). 

4. Project Work Part 1 

   - Thematic projects (e.g., land-use change detection, flood modeling, urban heat island analysis). 

5. Fieldwork & Data Collection 

   - Ground truthing, GPS surveys, drone/UAV-based data acquisition, sensor integration. 

 

Semester 4:

Thesis/Dissertation 

- Independent Research Thesis 

  - Focus areas: 

    - AI-driven crop yield prediction, 

    - Glacier retreat monitoring using SAR/optical data, 

    - 3D city modeling with LiDAR, 

    - Real-time GIS for disaster response. 

  - Thesis submission and defense. 

 

Elective Options (Semesters 2–3):

- Oceanography & Coastal Zone Management 

- Biodiversity Conservation & Habitat Mapping 

- Geospatial Big Data Analytics 

- IoT & Sensor Networks for Environmental Monitoring 

- Hydrological Modeling (SWAT, HEC-RAS) 

- GeoAI (Integration of AI/ML with GIS) 

 

Key Tools & Software: 

- RS Software: ERDAS Imagine, ENVI, SNAP, Google Earth Engine. 

- GIS Platforms: ArcGIS Pro, QGIS, GRASS GIS, GeoDa. 

- Programming: Python (Geopandas, Scikit-learn, TensorFlow), R (terra, raster packages). 

- Data Sources: USGS Earth Explorer, Copernicus Open Access Hub, NASA Earthdata. 

 

Lab/Practical Focus: 

1. Satellite Data Processing: 

   - Preprocessing (atmospheric correction, pansharpening), time-series analysis for deforestation. 

2. Drone/UAV Applications: 

   - Orthomosaic generation (Pix4D, Agisoft), multispectral data analysis for precision agriculture. 

3. Web GIS Development: 

   - Building interactive dashboards (Dash, Leaflet), deploying spatial APIs. 

4. Field Surveys: 

   - Using GPS devices (Trimble), integrating field data with satellite imagery. 

More Related Course