H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Machine Learning

Semester-wise syllabus for an M.Tech in Machine Learning

 

Semester 1:

 Foundational Concepts 

1. Mathematics for Machine Learning 

   - Linear algebra, calculus, probability, statistics, and optimization (gradient descent, convexity). 

2. Programming for Data Science 

   - Python/R programming, data structures, libraries (NumPy, Pandas, Scikit-learn), and version control (Git). 

3. Introduction to Machine Learning 

   - Supervised/unsupervised learning (regression, classification, clustering), evaluation metrics, bias-variance tradeoff. 

4. Data Acquisition and Preprocessing 

   - Data cleaning, feature engineering, dimensionality reduction (PCA, t-SNE), and handling imbalanced data. 

5. Lab Work 

   - Hands-on projects: EDA, basic ML models (k-NN, decision trees), and Kaggle-style competitions. 

 

Semester 2:

 Core Machine Learning & Advanced Topics 

1. Advanced Machine Learning 

   - Ensemble methods (Random Forest, XGBoost), SVM, Bayesian networks, and probabilistic graphical models. 

2. Deep Learning Fundamentals 

   - Neural networks (CNNs, RNNs), backpropagation, regularization, PyTorch/TensorFlow frameworks. 

3. Big Data Technologies 

   - Distributed computing (Hadoop, Spark), NoSQL databases, and cloud platforms (AWS, GCP). 

4. Optimization for ML 

   - Stochastic optimization, hyperparameter tuning, AutoML, and metaheuristics. 

5. Elective 1 

   - Options: Natural Language Processing (NLP), Computer Vision, Reinforcement Learning. 

6. Lab Work 

   - Implementing CNNs/RNNs, Spark-based data pipelines, and hyperparameter optimization (Optuna, Keras Tuner). 

 

Semester 3:

Specialization & Research 

1. Advanced Deep Learning 

   - Transformers, GANs, attention mechanisms, self-supervised learning, and transfer learning. 

2. Elective 2 

   - Options: Time Series Analysis, Graph Neural Networks, Edge AI. 

3. Elective 3 

   - Options: Explainable AI (XAI), Generative Models, AI Ethics. 

4. Research Project (Phase 1) 

   - Problem formulation, literature review, and experimental setup (e.g., building a recommendation system or medical diagnosis model). 

5. Lab Work 

   - Transformer-based NLP tasks (BERT, GPT), GANs for image generation, edge deployment (TensorFlow Lite). 

 

Semester 4:

Thesis & Industry Applications 

1. Dissertation/Thesis 

   - Focus areas: AI ethics, domain-specific applications (healthcare, finance), or novel algorithms. 

2. Industry Internship (Optional) 

   - Collaborations with tech firms, startups, or research labs (e.g., deploying ML models in production). 

3. Emerging Topics Seminar 

   - Topics: Federated Learning, Quantum Machine Learning, AI for Sustainability. 

4. Seminar & Viva Voce 

   - Presentation and defense of thesis work, peer reviews, and industry feedback. 

 

Electives (Across Semesters 2–3) 

- Natural Language Processing (NLP): Word embeddings, sequence-to-sequence models, sentiment analysis. 

- Computer Vision: Object detection (YOLO), segmentation (U-Net), video analytics. 

- Reinforcement Learning: Q-learning, policy gradients, multi-agent systems. 

- AI in Healthcare: Medical imaging, predictive diagnostics, wearable data analysis. 

- MLOps: Model deployment (Docker, Kubernetes), monitoring, CI/CD pipelines. 

 

Tools & Technologies 

- Frameworks: PyTorch, TensorFlow, Keras, Hugging Face, OpenCV. 

- Cloud Platforms: AWS SageMaker, Google AI Platform, Azure ML. 

- Big Data Tools: Apache Spark, Dask, Kafka. 

- Visualization: Tableau, Matplotlib, Seaborn, Plotly. 

- Deployment: Flask/Django APIs, ONNX, TensorFlow Serving. 

 

Industry Applications 

- Tech: Recommendation systems (Netflix, Amazon), fraud detection. 

- Healthcare: Predictive diagnostics, drug discovery. 

- Finance: Algorithmic trading, credit scoring. 

- Autonomous Systems: Self-driving cars, robotics. 

- Sustainability: Climate modeling, energy optimization.

More Related Course