H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Digital Signal Processing (DSP)

Semester-wise syllabus for an M.Tech in Digital Signal Processing (DSP)

 

Semester 1:

 Core Foundations 

1. Advanced Digital Signal Processing 

   - Discrete-time signals, Z-transform, DFT/FFT algorithms, FIR/IIR filter design, multirate systems. 

2. Statistical Signal Processing 

   - Random processes, estimation theory (MMSE, ML), detection theory, Wiener/Kalman filters. 

3. Signal Processing Algorithms 

   - Adaptive filters (LMS, RLS), spectral estimation (periodogram, parametric methods). 

4. Programming for DSP 

   - MATLAB/Python (NumPy, SciPy), C/C++ for real-time DSP, GPU acceleration (CUDA). 

5. Lab Work 

   - FIR/IIR filter design, FFT implementation, noise reduction algorithms, and audio/image processing basics. 

 

Semester 2:

 Advanced Techniques & Applications 

1. Real-Time DSP Systems

   - DSP processor architectures (TI C6x, SHARC), fixed-point arithmetic, real-time OS integration. 

2. Image and Video Processing 

   - 2D transforms (DCT, wavelet), compression (JPEG, MPEG), edge detection, object recognition. 

3. Speech and Audio Processing 

   - Speech recognition (MFCC, HMMs), audio coding (MP3, AAC), noise cancellation. 

4. FPGA-Based DSP Design 

   - HDL programming (VHDL/Verilog), Xilinx/Vivado tools, FPGA implementations of DSP algorithms. 

5. Elective 1 

   - Options: Biomedical Signal Processing, Wireless Communications, Radar Signal Processing. 

6. Lab Work 

   - FPGA-based FIR filters, speech recognition (Python/TensorFlow), image compression (OpenCV). 

 

Semester 3:

Specialization & Research 

1. Wavelet Transforms and Sparse Representations 

   - Multiresolution analysis, wavelet-based compression/denoising, compressive sensing. 

2. Machine Learning for Signal Processing 

   - Deep learning for audio/image analysis (CNNs, RNNs), anomaly detection, time-series forecasting. 

3. Elective 2 

   - Options: Radar/Sonar Systems, IoT Signal Processing, Biomedical Imaging. 

4. Elective 3 

   - Options: 5G/6G Signal Processing, Quantum Signal Processing, Embedded DSP Systems. 

5. Research Project (Phase 1) 

   - Proposal development (e.g., ECG signal classification, radar target detection, or AI-driven noise reduction). 

6. Lab Work

   - ECG signal analysis (MATLAB), radar signal simulation (GNU Radio), deep learning for denoising (PyTorch). 

 

Semester 4:

Dissertation & Industry Integration 

1. Dissertation/Thesis 

   - Focus areas: AI-enhanced DSP, medical imaging, wireless communication systems, or defense applications. 

2. Industry Internship (Optional) 

   - Collaborations with telecom firms (Ericsson, Qualcomm), medical device companies, or defense labs (DRDO, ISRO). 

3. Emerging Trends Seminar 

   - Topics: AI/ML in DSP, brain-computer interfaces, terahertz signal processing. 

4. Seminar & Viva Voce 

   - Presentation and defense of thesis, peer reviews, and industry expert feedback. 

 

Electives (Across Semesters 2–3) 

- Biomedical Signal Processing: EEG/ECG analysis, MRI reconstruction, wearable sensor data. 

- Wireless Communications: OFDM, MIMO systems, channel equalization, 5G NR protocols. 

- Radar Signal Processing: SAR imaging, Doppler processing, target tracking. 

- IoT Signal Processing: Edge computing, sensor fusion, low-power DSP for IoT devices. 

- Quantum Signal Processing: Quantum Fourier transform, quantum noise mitigation. 

 

Tools & Technologies

- Software: MATLAB, Python (Librosa, OpenCV), Simulink, GNU Radio, LabVIEW. 

- Hardware: TI DSP kits (TMS320C6x), Xilinx FPGAs, Raspberry Pi/Arduino for prototyping. 

- Machine Learning: TensorFlow, PyTorch, Keras for signal classification/analysis. 

- Cloud/Edge: AWS IoT, TensorFlow Lite, ONNX for deployment. 

 

Industry Applications 

- Telecom: 5G/6G modulation, beamforming, channel coding. 

- Healthcare: Medical imaging (MRI/CT), wearable health monitors, prosthetics control.  

- Defense/Aerospace: Radar/sonar systems, satellite communication, electronic warfare. 

- Consumer Electronics: Noise-canceling headphones, image enhancement (smartphones), voice assistants.

More Related Course