H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Data Science and Engineering

semester-wise syllabus for an M.Tech in Data Science and Engineering

 

Semester 1: Core Foundations

Courses:

1. Advanced Mathematics for Data Science 

   - Linear algebra, probability, statistics, optimization, and calculus for ML. 

2. Machine Learning Fundamentals 

   - Supervised/unsupervised learning (regression, SVM, clustering), evaluation metrics, and bias-variance tradeoff. 

3. Big Data Technologies 

   - Hadoop, Spark, HDFS, MapReduce, and distributed computing frameworks. 

4. Data Visualization 

   - Tools (Tableau, Power BI), storytelling with data, and exploratory data analysis (EDA). 

5. Programming for Data Science 

   - Python/R, SQL, and libraries (NumPy, Pandas, Scikit-learn). 

Labs: 

- Python/R Programming Lab (Jupyter, RStudio) 

- Big Data Lab (Spark, Hadoop, AWS/Google Cloud) 

 

Semester 2: Specialization & Electives 

Core Courses:

1. Deep Learning 

   - Neural networks, CNNs, RNNs, transformers, and frameworks (TensorFlow, PyTorch). 

2. Advanced Statistical Modeling 

   - Bayesian methods, time series analysis, and experimental design. 

 

Electives (Examples): 

- Natural Language Processing (NLP) 

- Computer Vision 

- Cloud Computing for Data Science (AWS, Azure, GCP) 

- Business Analytics (decision trees, A/B testing, optimization) 

- IoT and Sensor Data Analytics 

Labs:

- Deep Learning Lab (TensorFlow/PyTorch projects) 

- NLP Lab (NLTK, spaCy, Hugging Face) 

 

Semester 3:

Advanced Electives & Project Work 

Electives (Examples): 

- Reinforcement Learning 

- AI Ethics and Responsible AI

- Graph Analytics (network analysis, GNNs) 

- Time Series Forecasting (ARIMA, Prophet, LSTM) 

- Blockchain and Data Security 

Project/Dissertation:

- Phase 1: Topic selection (e.g., fraud detection, recommendation systems, predictive maintenance), literature review, and proposal. 

- Seminars: Presentations on trends like MLOps, AutoML, or generative AI (e.g., GPT, diffusion models). 

 

Semester 4: Thesis/Project Completion

Thesis/Project: 

- Full-time focus on end-to-end implementation (data collection, model training, deployment). 

- Final documentation, viva voce defense, and deployment (e.g., Flask/Django API, cloud deployment). 

Additional Components: 

- Industrial Internship (optional, with tech firms, startups, or analytics consultancies). 

- Workshops: Training in *MLOps tools* (MLflow, Kubeflow), *Docker/Kubernetes, or **AI deployment platforms* (Sagemaker, Vertex AI). 

 

Elective Tracks (Specializations): 

1. AI/ML Engineering 

   - Model deployment, MLOps, and scalable ML systems. 

2. Big Data Analytics

   - Distributed systems, real-time analytics (Kafka, Spark Streaming). 

3. Business Intelligence 

   - Dashboarding, prescriptive analytics, and decision science. 

4. Domain-Specific Analytics 

   - Healthcare, finance, retail, or social media analytics.