H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Computational Mechanics

Semester-wise syllabus outline for an M.Tech in Computational Mechanics

 

Semester 1:

Foundational Core

1. Advanced Numerical Methods

   - Finite difference/element/volume methods, linear algebra solvers (direct/iterative), error analysis. 

2. Computational Solid Mechanics 

   - Stress-strain modeling, elasticity, plasticity, hyperelasticity, and constitutive laws. 

3. Finite Element Analysis (FEA) 

   - Static/dynamic analysis, isoparametric elements, meshing techniques, validation. 

4. Programming for Mechanics 

   - Python/Matlab for scientific computing, introduction to C++/Fortran for high-performance computing (HPC). 

5. Lab 1: Basic FEM & Coding 

   - Implementing simple FEM codes (e.g., beam/plate bending), using open-source tools (FEniCS, CalculiX). 

 

Semester 2:

Advanced Modeling & Applications

1. Nonlinear Finite Element Analysis 

   - Geometric/material nonlinearities, contact mechanics, solution algorithms (Newton-Raphson). 

2. Computational Fluid Mechanics (CFD) (Optional Core) 

   - Navier-Stokes equations, turbulence modeling (RANS, LES), finite volume methods. 

3. Multiphysics & Coupled Systems 

   - Thermo-mechanical, fluid-structure interaction (FSI), piezoelectric systems. 

4. Elective 1 (e.g., Fracture Mechanics or Computational Heat Transfer) 

5. Lab 2: Advanced FEM & Commercial Tools 

   - ANSYS/ABAQUS/COMSOL projects, validation against analytical solutions, HPC basics (parallel computing). 

 

Semester 3:

Specialization & Research 

1. Elective 2 (e.g., Multiscale Modeling or Topology Optimization) 

2. Elective 3 (e.g., Machine Learning in Mechanics or Biomechanics) 

3. Probabilistic & Stochastic Mechanics 

   - Uncertainty quantification, Monte Carlo methods, reliability-based design. 

4. Project Work Part 1 

   - Research proposal, literature review, preliminary simulations (e.g., crash analysis, composite modeling). 

5. Workshops/Professional Skills 

   - Industry-standard software training (LS-DYNA, OpenFOAM), data visualization (Paraview, Tecplot). 

 

Semester 4:

Thesis/Dissertation 

- Independent Research Thesis 

  - Focus on cutting-edge topics (e.g., AI-driven simulations, additive manufacturing modeling, multiscale FEA). 

  - Dissertation submission and defense. 

 

Elective Options (Semesters 2–3): 

- Advanced CFD & Turbulence Modeling 

- Computational Geomechanics 

- Material Modeling (Metals, Composites, Polymers) 

- High-Performance Computing (HPC) in Mechanics 

- Inverse Problems & Optimization 

- Digital Twin Technology for Structural Systems 

 

Lab Focus Areas: 

1. Code Development: Writing custom FEM/CFD solvers for niche problems. 

2. Validation & Verification: Benchmarking simulations against experiments/theory. 

3. Industry Applications:

   - Automotive crash analysis, 

   - Aerospace component optimization, 

   - Biomedical device modeling (e.g., stent deployment).