H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Bioinformatics

Semester-wise syllabus for an M.Tech in Bioinformatics

 

Semester 1: Core Foundations

1. Introduction to Bioinformatics 

   - History, scope, biological databases (NCBI, PDB, UniProt), sequence alignment tools (BLAST, ClustalW), and ontology (Gene Ontology, KEGG). 

   2. Molecular Biology and Biochemistry 

   - DNA/RNA structure, gene expression, protein synthesis, metabolic pathways, and genomics basics. 

3. Programming for Bioinformatics 

   - Python/R programming, Biopython/Bioconductor, data structures, and scripting for biological data analysis. 

4. Biostatistics and Data Analysis 

   - Probability, hypothesis testing, regression, ANOVA, and tools like R/SPSS for biological datasets. 

5. Lab 1: Computational Tools 

   - Hands-on with sequence alignment, database searching, and basic scripting (e.g., automating BLAST workflows). 

 

Semester 2: Advanced Methods & Applications

1. Algorithms in Bioinformatics 

   - Dynamic programming (Smith-Waterman, Needleman-Wunsch), phylogenetic tree construction, and hidden Markov models (HMMs). 

2. Structural Bioinformatics

   - Protein structure prediction (homology modeling, threading), molecular docking, and tools like PyMOL, GROMACS. 

3. Genomics and Proteomics 

   - NGS data analysis (RNA-seq, ChIP-seq), genome assembly, proteomics workflows (MALDI-TOF, mass spectrometry). 

 

4. Systems Biology 

   - Network modeling (gene regulatory networks, metabolic pathways), and tools like Cytoscape, CellDesigner. 

5. Lab 2: Omics Data Analysis 

   - RNA-seq pipeline (FastQC, HISAT2, DESeq2), protein structure visualization, and pathway analysis. 

6. Elective 1 

   - Example: Drug Discovery & Cheminformatics or Next-Generation Sequencing Technologies. 

 

Semester 3: Specializations & Dissertation Prep

1. Machine Learning in Bioinformatics 

   - Classification, clustering, neural networks, and applications in gene prediction, biomarker discovery. 

2. Clinical Bioinformatics 

   - Personalized medicine, cancer genomics, variant analysis (SNPs, CNVs), and tools like ANNOVAR, GATK. 

3. Elective 2 

   - Example: Metagenomics & Microbiome Analysis or Pharmacogenomics. 

4. Elective 3 

   - Example: AI for Drug Design or Single-Cell Genomics.  

5. Dissertation Phase 1 

   - Literature review, research proposal, and initial data collection. 

6. Lab 3: Advanced Tools 

   - Machine learning frameworks (TensorFlow, scikit-learn) and cloud-based analysis (AWS, Galaxy Platform). 

 

Semester 4: Dissertation & Industry Training

1. Dissertation Phase 2 

   - Full-time research, implementation, thesis writing, and defense. 

   - Example projects: 

     - Developing a pipeline for cancer mutation detection. 

     - Designing an AI model for protein-ligand interaction prediction. 

2. Industry Internship (Optional) 

   - Practical training in biotech/pharma companies or research labs. 

 

Elective Options 

- Chemoinformatics: Molecular docking, QSAR, virtual screening. 

- Evolutionary Bioinformatics: Phylogenetics, molecular evolution. 

- Big Data in Biology: Hadoop/Spark for genomic datasets. 

- Immunoinformatics: Vaccine design, epitope prediction. 

- Ethics in Bioinformatics: Data privacy, genomic ethics. 

 

Key Tools & Technologies 

- Programming: Python, R, Perl, SQL. 

- Tools: BLAST, PyMOL, AutoDock, Galaxy, GROMACS, Bioconductor. 

- Cloud Platforms: AWS, Google Cloud for large-scale data analysis. 

- ML Libraries: TensorFlow, Keras, scikit-learn.