H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

M.Tech in Artificial Intelligence

Semester-wise syllabus for an M.Tech in Artificial Intelligence

 

Semester 1: Core Foundations 

Courses: 

1. Mathematics for AI

   - Linear algebra, probability, statistics, optimization, and calculus for machine learning. 

2. Machine Learning Fundamentals

   - Supervised/unsupervised learning, regression, SVM, decision trees, evaluation metrics. 

3. Python Programming for AI 

   - NumPy, Pandas, Scikit-learn, and data preprocessing techniques. 

4. Deep Learning Basics 

   - Neural networks, backpropagation, CNNs, and frameworks (TensorFlow/PyTorch). 

5. Research Methodology 

   - Technical writing, literature review, and ethics in AI. 

Labs: 

- Python Programming Lab (Jupyter, Colab) 

- Machine Learning Lab (Scikit-learn projects) 

 

Semester 2: Advanced AI & Electives

Core Courses: 

1. Advanced Deep Learning

   - RNNs, LSTMs, Transformers, GANs, and attention mechanisms. 

2. Natural Language Processing (NLP) 

   - Tokenization, embeddings, BERT, GPT, and Hugging Face libraries. 

 

Electives (Examples): 

- Computer Vision (OpenCV, YOLO, object detection) 

- Reinforcement Learning (Q-learning, policy gradients, OpenAI Gym) 

- AI for Robotics (SLAM, path planning, ROS integration) 

- Big Data Analytics (Spark, Hadoop, distributed ML) 

- AI Ethics and Fairness (bias detection, explainability, regulatory compliance) 

Labs: 

- Deep Learning Lab (TensorFlow/PyTorch projects) 

- NLP Lab (NLTK, spaCy, Transformer models) 

 

Semester 3: Specialization & Project Work 

Electives (Examples): 

- Generative AI (Diffusion models, LLMs, Stable Diffusion) 

- AI in Healthcare (Medical imaging, drug discovery) 

- Edge AI (TinyML, model optimization for IoT devices) 

- Quantum Machine Learning (Basics of quantum algorithms for AI) 

- AI for Cybersecurity (Anomaly detection, adversarial attacks) 

Project/Dissertation: 

- Phase 1: Topic selection (e.g., AI-driven chatbot, autonomous system, fraud detection), literature review, and proposal. 

- Seminars: Presentations on trends like multimodal AI, AI regulation, or AI-augmented creativity. 

 

Semester 4: Thesis/Project Completion 

Thesis/Project: 

- Full-time focus on implementation (e.g., training/deploying models, building AI systems). 

- Final documentation, viva voce defense, and deployment (cloud/edge). 

Additional Components:

- Industrial Internship (optional, with AI firms like NVIDIA, Google AI, or startups). 

- Workshops: Training in MLOps tools (MLflow, Kubeflow), AI deployment (Docker, Flask), or cloud platforms (AWS SageMaker, Azure ML). 

 

Elective Tracks (Specializations):

1. Computer Vision 

   - Image/video analysis, autonomous vehicles, AR/VR. 

2. NLP and Conversational AI 

   - Chatbots, sentiment analysis, multilingual models. 

3. AI Engineering 

   - MLOps, scalable AI systems, model deployment. 

4. AI for Social Good 

   - Climate modeling, healthcare accessibility, ethical AI.