H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

BBA in Business Analytics

Semester-wise syllabus for a BBA in Business Analytics

 

Semester 1:

Foundations of Business & Analytics

1. Principles of Management 

   - Basics of management, organizational structures, and decision-making. 

2. Financial Accounting 

   - Fundamentals of accounting, financial statements, and ledgers. 

3. Business Mathematics & Statistics 

   - Algebra, probability, descriptive statistics, and data interpretation. 

4. Introduction to Business Analytics 

   - Overview of analytics in business, types of analytics (descriptive, predictive, prescriptive). 

5. IT Fundamentals 

   - Basics of Excel, data entry, and introduction to analytics tools (e.g., Tableau). 

6. Microeconomics 

   - Supply-demand, market equilibrium, and business decision frameworks. 

 

Semester 2:

 Core Business & Data Skills

1. Macroeconomics 

   - GDP, inflation, fiscal policy, and economic indicators. 

2. Marketing Management

   - Consumer behavior, segmentation, and analytics in marketing. 

3. Database Management Systems (DBMS) 

   - SQL, data modeling, and relational databases. 

4. Business Communication 

   - Data storytelling, visualization basics, and report writing. 

5. Programming Fundamentals 

   - Introduction to Python/R for data manipulation (Pandas, NumPy). 

6. Operations Research 

   - Linear programming, optimization, and decision analysis. 

 

Semester 3:

Intermediate Analytics & Tools

1. Predictive Analytics 

   - Regression analysis, time-series forecasting, and model evaluation. 

2. Data Visualization 

   - Tools like Tableau, Power BI, and design principles for dashboards. 

3. Financial Management 

   - Capital budgeting, financial ratios, and analytics in finance. 

4. Business Law & Ethics 

   - Legal frameworks, data privacy (GDPR, HIPAA), and ethical AI. 

5. Machine Learning Basics 

   - Supervised vs. unsupervised learning, clustering, and classification (using Python/R). 

6. Supply Chain Analytics 

   - Inventory optimization, logistics analytics, and demand forecasting. 

 

Semester 4:

Advanced Analytics & Applications

1. Big Data Analytics 

   - Hardtop, Spark, and handling unstructured data. 

2. Marketing Analytics 

   - Customer segmentation, campaign analysis, and ROI metrics. 

3. Prescriptive Analytics 

   - Decision optimization, simulation, and scenario modeling. 

4. HR Analytics 

   - Talent analytics, employee retention, and workforce planning. 

5. Web & Social Media Analytics

   - Sentiment analysis, SEO, and social network analysis. 

6. Elective 1 (e.g., Retail Analytics or Healthcare Analytics). 

 

Semester 5:

Specializations & Industry Integration

1. Advanced Machine Learning

   - Neural networks, NLP, and deep learning basics. 

2. Business Intelligence (BI) Systems 

   - ERP integration, SAP Analytics, and real-time dashboards. 

3. Risk Management & Analytics

   - Financial risk modeling, Monte Carlo simulations. 

4. Elective 2 (e.g., Financial Analytics or Sports Analytics). 

5. Elective 3 (e.g., AI in Business or Block chain for Analytics). 

6. Internship/Industry Project 

   - Hands-on experience in analytics roles (e.g., data analyst, BI intern). 

 

Semester 6:

Capstone & Professional Development

1. Capstone Project

   - End-to-end analytics project solving real business problems (e.g., churn prediction, market basket analysis). 

2. Data Governance & Quality 

   - Master data management, data cleaning, and governance frameworks. 

3. Strategic Management

   - Analytics-driven strategy formulation and case studies. 

4. Elective 4 (e.g., IoT Analytics or Fraud Detection). 

5. Career Readiness

   - Resume building, analytics certifications (e.g., Google Analytics, Power BI), and interview prep. 

6. Dissertation/Research Paper 

   - Independent research on emerging trends (e.g., AI ethics, predictive policing).