H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

B.Tech in Remote Sensing and GIS

Semester-wise syllabus for B.Tech in Remote Sensing and GIS

Semester 1: Foundation Courses

  1. Mathematics-I

    • Calculus, Linear Algebra, Differential Equations

    • Coordinate Geometry, Matrices

  2. Physics

    • Mechanics, Optics, Electromagnetism

    • Basics of Waves and Radiation (for RS applications)

  3. Chemistry / Environmental Science

    • Environmental Chemistry, Pollution Studies

    • Sustainable Development

  4. Computer Fundamentals & Programming (C/Python)

    • Basics of Programming, Algorithms

    • Introduction to Python for Geospatial Applications

  5. Engineering Graphics & CAD

    • Technical Drawing, GIS Map Layout Basics

  6. Communication Skills & Technical English

    • Report Writing, Presentation Skills


Semester 2: Core Basics

  1. Mathematics-II (Probability & Statistics)

    • Probability Distributions, Hypothesis Testing

    • Statistical Methods for Geospatial Data

  2. Surveying & Geodesy

    • Chain Surveying, Theodolite, Total Station

    • GPS Fundamentals, Coordinate Systems

  3. Introduction to Remote Sensing (RS) & GIS

    • Basics of RS, Electromagnetic Spectrum

    • GIS Components: Data Types, Vector vs. Raster

  4. Digital Image Processing (DIP) Basics

    • Image Enhancement, Filtering, Histogram Equalization

  5. Environmental Studies

    • Ecosystems, Biodiversity, Climate Change

  6. Programming for Geospatial Analysis (Python/Matlab)

    • Geospatial Libraries (GDAL, Rasterio)


Semester 3: Core Remote Sensing & GIS

  1. Geospatial Database Management

    • SQL, NoSQL for GIS, PostGIS

    • Spatial Queries

  2. Cartography & Map Projections

    • Map Design, Symbology, Coordinate Systems

    • UTM, WGS84, Lambert Conformal

  3. Satellite Remote Sensing

    • Optical, Thermal, and Microwave RS

    • Landsat, Sentinel, MODIS Sensors

  4. GIS Data Structures & Algorithms

    • Raster & Vector Data Models

    • Spatial Indexing (Quadtree, R-tree)

  5. Geoinformatics Applications

    • Case Studies in Urban Planning, Agriculture

  6. Field Survey Techniques (Practical)

    • GNSS Surveying, Drone Data Collection


Semester 4: Advanced RS & GIS

  1. Digital Image Processing for RS

    • Supervised/Unsupervised Classification

    • NDVI, PCA, Object-Based Image Analysis (OBIA)

  2. Spatial Analysis & Modeling in GIS

    • Network Analysis, Hydrological Modeling

    • Geostatistics (Kriging, IDW)

  3. Microwave & LiDAR Remote Sensing

    • SAR (Synthetic Aperture Radar) Basics

    • LiDAR Data Processing

  4. Web GIS & Cloud Computing

    • ArcGIS Online, Google Earth Engine

    • GeoServer, Leaflet, OpenLayers

  5. GPS & GNSS Technology

    • Differential GPS, RTK, GNSS Applications

  6. Open-Source GIS Tools (QGIS, GRASS GIS)


Semester 5: Specialized Topics

  1. Hyperspectral Remote Sensing

    • Spectral Libraries, Endmember Extraction

  2. GIS Programming (Python, JavaScript)

    • ArcPy, GeoPandas, Folium, D3.js

  3. Urban & Regional Planning using GIS

    • Land Use/Land Cover (LULC) Mapping

  4. Remote Sensing for Disaster Management

    • Flood Mapping, Earthquake Risk Assessment

  5. Machine Learning in Geospatial Analysis

    • Random Forest, CNN for Image Classification

  6. Elective-I (Agriculture/Forestry/Hydrology)


Semester 6: Industry-Oriented Courses

  1. Big Data Analytics in GIS

    • Hadoop, Spark for Geospatial Data

  2. Geospatial AI & Deep Learning

    • U-Net, YOLO for Object Detection

  3. Environmental Remote Sensing

    • Carbon Sequestration, Wetland Monitoring

  4. GIS for Smart Cities

    • IoT Integration, Urban Heat Island Analysis

  5. Elective-II (Oceanography/Climate Studies)

  6. Internship / Industrial Training


Semester 7: Advanced Applications & Project Work

  1. Geospatial Data Mining

    • Pattern Recognition, Clustering

  2. 3D GIS & Terrain Modeling

    • DEM, TIN, LiDAR Point Clouds

  3. Remote Sensing for Natural Resource Management

    • Mineral Exploration, Soil Moisture Mapping

  4. Project Management & GIS

    • SDLC, Agile Methods in Geospatial Projects

  5. Major Project (Phase-I – Research & Proposal)

  6. Elective-III (Drone Technology/IoT in GIS)


Semester 8: Final Project & Professional Development

  1. Major Project (Phase-II – Implementation & Thesis Submission)

  2. Professional Ethics & GIS Industry Standards

  3. Emerging Trends in Remote Sensing & GIS

  4. Elective-IV (Geospatial Law/Policy)


Key Software & Tools Covered:

  • GIS: ArcGIS, QGIS, GRASS GIS, ERDAS Imagine, ENVI

  • Programming: Python (GDAL, GeoPandas, Scikit-learn), JavaScript (Leaflet, OpenLayers)

  • Web GIS: GeoServer, PostGIS, Google Earth Engine

  • Drones & LiDAR: Pix4D, LAS Tools

  • Machine Learning: TensorFlow, PyTorch for Geospatial AI