H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

B.Tech in Machine Learning

B.Tech in Machine Learning – Semester-wise Syllabus 

 

Year 1: Foundations of Computing & Mathematics 

Semester 1:

1. Mathematics-I: Linear Algebra, Calculus 

2. Programming Fundamentals: Python Basics, Control Structures 

3. Physics for Engineers / Computational Thinking

4. Digital Logic & Computer Organization 

5. Introduction to Machine Learning: Basic Concepts, Applications 

6. Lab: Python Programming, Simple ML Models (Regression, Classification) 

 

Semester 2: 

1. Mathematics-II: Probability, Statistics 

2. Data Structures & Algorithms: Arrays, Trees, Graphs, Sorting 

3. Discrete Mathematics: Logic, Sets, Combinatorics 

4. Object-Oriented Programming (C++/Java) 

5. Database Management Systems: SQL, NoSQL Basics 

6. Lab: Data Structures Projects, SQL Queries 

 

Year 2: Core Machine Learning & Data Science

Semester 3: 

1. Statistics for ML: Distributions, Hypothesis Testing, Bayesian Inference 

2. Supervised Learning: Linear/Logistic Regression, Decision Trees, SVMs 

3. Data Preprocessing & Visualization: Pandas, Matplotlib, Seaborn 

4. Operating Systems: Processes, Memory Management 

5. Optimization Techniques: Gradient Descent, Convex Optimization 

6. Lab: Scikit-learn Projects, EDA (Exploratory Data Analysis) 

 

Semester 4: 

1. Unsupervised Learning: Clustering (K-Means, DBSCAN), PCA, Dimensionality Reduction 

2. Deep Learning Basics: Neural Networks, Backpropagation 

3. Reinforcement Learning: Markov Decision Processes, Q-Learning 

4. Big Data Technologies: Hadoop, Spark Basics 

5. Software Engineering: Agile, Version Control (Git) 

6. Lab: TensorFlow/Keras Projects, Spark Data Processing 

 

Year 3: Advanced ML & Domain Applications 

Semester 5: 

1. Natural Language Processing (NLP): Tokenization, Transformers, BERT 

2. Computer Vision: CNN, Object Detection, OpenCV 

3. Time Series Analysis: ARIMA, LSTM Networks 

4. Elective-I: Healthcare Analytics / FinTech / Robotics 

5. Cloud Computing: AWS/Azure ML Services 

6. Lab: NLP Pipelines, Image Classification (PyTorch) 

 

Semester 6: 

1. Advanced Deep Learning: GANs, Autoencoders, Transfer Learning 

2. MLOps: Model Deployment, Docker, CI/CD Pipelines 

3. AI Ethics & Fairness: Bias Mitigation, Explainable AI (XAI) 

4. Elective-II: Autonomous Systems / Recommender Systems 

5. Elective-III: Quantum Machine Learning / Edge AI 

6. Lab: Deploying Models (Flask/Django), Ethical AI Case Studies 

 

Year 4: Specialization & Industry Integration 

Semester 7: 

1. Advanced Topics in ML: Federated Learning, Meta-Learning 

2. Domain-Specific ML: Genomics, IoT, Cybersecurity 

3. Elective-IV: Generative AI / AI for Sustainability 

4. Elective-V: Advanced Robotics / AI in Gaming 

5. Capstone Project-I: Industry/Research Problem (e.g., Predictive Maintenance, Fraud Detection) 

6. Internship: AI Labs (Google, NVIDIA), Startups, or Research Institutes 

 

Semester 8: 

1. Project Management: Scrum, Data Governance 

2. Entrepreneurship in AI: Startups, IP Rights 

3. Emerging Trends: AI Legislation, Neuromorphic Computing 

4. Capstone Project-II: End-to-End ML Solution Development 

5. Seminar/Technical Paper Presentation 

 

Electives (Sample Options): 

- Healthcare: Medical Imaging, Drug Discovery 

- Finance: Algorithmic Trading, Risk Modeling 

- Robotics: SLAM, Reinforcement Learning for Control 

- NLP: Multilingual Models, Voice Assistants 

- Sustainability: Climate Modeling, Energy Optimization 

- Creative AI: Art Generation, Music Synthesis 

 

Key Tools & Labs: 

- Programming: Python, R, Julia 

- Frameworks: TensorFlow, PyTorch, Hugging Face, LangChain 

- Cloud Platforms: AWS SageMaker, Google Colab, Azure ML 

- Visualization: Tableau, Power BI 

- Big Data: Apache Spark, Kafka 

- Deployment: Docker, Kubernetes, Flask