H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

B.Tech in Digital Signal Processing (DSP)

B.Tech in Digital Signal Processing (DSP) – Semester-wise Syllabus

 

Year 1: Foundation in Engineering & Mathematics 

Semester 1: 

1. Mathematics-I: Calculus, Linear Algebra 

2. Engineering Physics: Waves, Oscillations, Acoustics 

3. Basic Electrical Engineering: Circuits, Network Analysis 

4. Programming Fundamentals: Python/ MATLAB Basics 

5. Engineering Graphics & CAD 

6. Lab: Basic Circuit Design, Python Programming 

 

Semester 2: 

1. Mathematics-II: Differential Equations, Probability 

2. Analog Electronics: Op-Amps, Filters, Signal Conditioning 

3. Digital Electronics: Logic Gates, ADC/DAC 

4. Signals & Systems Basics: Time/Frequency Domain Concepts 

5. Environmental Science 

6. Lab: Analog/Digital Signal Simulation (MATLAB) 

 

Year 2: Core Signal Processing 

Semester 3:

1. Signals & Systems: Continuous/Discrete Time Signals, Convolution 

2. Mathematics for DSP: Fourier Series, Transforms (FT, DFT) 

3. Analog Communication Systems: AM, FM, Modulation 

4. Microprocessors & Microcontrollers (ARM, DSP Processors) 

5. Data Structures & Algorithms 

6. Lab: FFT Implementation, Modulation/Demodulation 

 

Semester 4: 

1. Digital Signal Processing-I: Z-Transform, FIR/IIR Filters 

2. Digital Communication: PCM, QAM, Error Control Coding 

3. Random Signals & Noise: Stochastic Processes, SNR Analysis 

4. Embedded Systems: Real-Time DSP with C/Assembly 

5. Control Systems: Feedback, Stability 

6. Lab: Filter Design (MATLAB), Embedded DSP Projects 

 

Year 3: Advanced DSP & Applications

Semester 5: 

1. Digital Signal Processing-II: Multirate Systems, Wavelets 

2. Image Processing: Edge Detection, Compression (JPEG, MPEG) 

3. Statistical Signal Processing: Estimation, Detection Theory 

4. Elective-I: Audio Signal Processing / Biomedical Signal Processing 

5. Real-Time DSP: FPGA/ARM Implementation (VHDL/Verilog) 

6. Lab: Image Enhancement, Real-Time Filtering (LabVIEW) 

 

Semester 6: 

1. Adaptive Signal Processing: LMS, RLS Algorithms 

2. Speech Processing: MFCC, Speech Recognition (HMMs) 

3. Machine Learning for DSP: Neural Networks, Feature Extraction 

4. Elective-II: Radar & Sonar Signal Processing / Wireless Communications 

5. Elective-III: IoT Sensor Networks / Computer Vision 

6. Lab: Speech Recognition (Python), Adaptive Noise Cancellation 

 

Year 4: Specialization & Industry Integration 

Semester 7:

1. Advanced Topics in DSP: Sparse Signals, Compressed Sensing 

2. DSP for 5G/6G: OFDM, Massive MIMO, Beamforming 

3. Elective-IV: Quantum Signal Processing / AI in DSP 

4. Elective-V: Automotive DSP (ADAS, LiDAR) / Multimedia Systems 

5. Capstone Project-I: Industry/Research Problem (e.g., ECG Signal Analysis, Noise Reduction) 

6. Internship: Telecom, Semiconductor, or Biomedical Firms (Qualcomm, Texas Instruments, Philips) 

 

Semester 8: 

1. DSP Hardware Optimization: ASIC/FPGA Design for Low Power 

2. Ethics & Standards: Privacy in Signal Processing (e.g., GDPR) 

3. Emerging Trends: Neuromorphic DSP, Edge AI 

4. Capstone Project-II: Prototype Development (e.g., Smart Hearing Aid, Drone Navigation) 

5. Seminar/Technical Presentations

 

Electives (Sample Options): 

- Biomedical DSP: EEG/ECG Analysis, MRI Reconstruction 

- Audio Engineering: Spatial Audio, Noise Cancellation 

- Radar Systems: SAR Imaging, Target Tracking 

- Optical Signal Processing: LiDAR, Fiber Optics 

- AI-Driven DSP: Generative Models for Signal Synthesis 

- Cybersecurity: Signal Encryption, Watermarking 

 

Key Labs & Tools: 

- MATLAB/Simulink: Algorithm design, filter simulation. 

- Python Libraries: NumPy, SciPy, Librosa (audio), OpenCV (image). 

- FPGA Tools: Xilinx Vivado, Intel Quartus for hardware implementation.  

- DSP Kits: TI TMS320C6x, ARM Cortex-M for real-time processing. 

- Cloud Platforms: AWS/Azure for large-scale signal analysis. 

 

Capstone Projects: 

- Smart Noise Cancellation: Real-time adaptive filtering for headphones. 

- Medical Imaging Enhancement: MRI/CT scan reconstruction using wavelets. 

- Autonomous Vehicle Perception: LiDAR signal processing for obstacle detection. 

- AI-Based Speech Enhancement: Noise suppression in VoIP applications.