H a l t o n A c a d e m y

About Us

Our goal is simple: we help you grow to be your best. Whether you’re a student, working professional, corporate organization or institution, we have tailored initiatives backed by industry specific expertise to meet your unique needs.

Contact Info

Halton Academy For Management and Technology Private Limited,
39/2475-B1 LR Towers, South Janatha Road, Palarivattom, Ernakulam, Kerala - 682025, India.

+91-7511-1890-01

4 Francis Street, le2 2bd, England,
United Kingdom.

hello@haltonacademy.com

B.Tech in Data Science and Engineering

*Semester 1: Foundation Basics* 

1. *Mathematics-I* (Calculus, Linear Algebra) 

2. *Programming Fundamentals* (Python, C/C++) 

3. *Engineering Physics* (Basics of Computing Hardware) 

4. *Introduction to Data Science* (Data Lifecycle, Applications) 

5. *Digital Logic Design* (Boolean Algebra, Logic Gates) 

6. *Environmental Science* 

*Lab*: Python Programming Lab, Basic Electronics Lab 

 

*Semester 2: Core Programming & Math* 

1. *Mathematics-II* (Probability, Statistics) 

2. *Data Structures and Algorithms* (Arrays, Trees, Graphs) 

3. *Database Management Systems* (SQL, Relational Algebra) 

4. *Discrete Mathematics* (Sets, Logic, Combinatorics) 

5. *Technical Communication* 

*Lab*: SQL Lab, Data Structures Implementation (Python/C++) 

 

*Semester 3: Data Science Fundamentals* 

1. *Mathematics-III* (Multivariate Calculus, Optimization) 

2. *Object-Oriented Programming* (Java/C++) 

3. *Statistical Methods for Data Science* (Hypothesis Testing, Regression) 

4. *Operating Systems* (Process Management, File Systems) 

5. *Data Visualization* (Matplotlib, Tableau, Power BI) 

*Lab*: Statistical Analysis (R/Python), Visualization Projects 

 

*Semester 4: Machine Learning & Engineering* 

1. *Introduction to Machine Learning* (Supervised/Unsupervised Learning) 

2. *Big Data Technologies* (Hadoop, Spark, MapReduce) 

3. *Web Technologies* (APIs, RESTful Services) 

4. *Linear Algebra for Data Science* (Matrix Operations, Eigenvalues) 

5. *Software Engineering* (Agile, DevOps Basics) 

*Lab*: ML with Scikit-learn, Hadoop/Spark Cluster Setup 

 

 

 *Semester 5: Advanced Analytics & Systems* 

1. *Deep Learning* (Neural Networks, TensorFlow/PyTorch) 

2. *Data Engineering* (ETL Pipelines, Airflow, Kafka) 

3. *Cloud Computing* (AWS/Azure/GCP, Serverless Architectures) 

4. *Time Series Analysis* (ARIMA, Forecasting) 

5. *Elective-I* (e.g., Natural Language Processing) 

*Lab*: Cloud Deployment Lab, End-to-End ML Pipeline Projects 

 

*Semester 6: Big Data & AI Applications* 

1. *Big Data Analytics* (Hive, HBase, NoSQL Databases) 

2. *Reinforcement Learning* (Q-Learning, Policy Gradients) 

3. *Distributed Systems* (Scalability, Consistency Models) 

4. *Business Intelligence* (Dashboarding, Decision Trees) 

5. *Elective-II* (e.g., Computer Vision) 

*Lab*: Real-Time Analytics (Kafka Streams), AI Model Deployment 

 

*Semester 7: Specialization & Capstone Projects* 

1. *AI Ethics and Governance* (Bias, Fairness, GDPR) 

2. *Advanced Data Engineering* (Data Lakes, Delta Lake) 

3. *Elective-III* (e.g., Blockchain for Data Security) 

4. *Elective-IV* (e.g., IoT Data Analytics) 

5. *Capstone Project-I* (Industry Problem Solving, e.g., Predictive Maintenance) 

*Lab*: MLOps (CI/CD Pipelines), Ethical AI Auditing Tools 

 

*Semester 8: Industry Integration* 

1. *Industrial Internship* (6–8 Weeks in Data-Driven Firms) 

2. *Capstone Project-II* (Thesis on Real-World Dataset, e.g., Healthcare Analytics) 

3. *Professional Ethics* 

4. *Elective-V* (e.g., Quantum Machine Learning) 

 

 *Electives (Sample)* 

- *Advanced NLP* (Transformers, BERT) 

- *Robotic Process Automation (RPA)* 

- *Financial Data Analytics* 

- *Geospatial Data Science* 

- *Recommender Systems*