B.Tech in Data Science and Engineering
*Semester 1: Foundation Basics*
1. *Mathematics-I* (Calculus, Linear Algebra)
2. *Programming Fundamentals* (Python, C/C++)
3. *Engineering Physics* (Basics of Computing Hardware)
4. *Introduction to Data Science* (Data Lifecycle, Applications)
5. *Digital Logic Design* (Boolean Algebra, Logic Gates)
6. *Environmental Science*
*Lab*: Python Programming Lab, Basic Electronics Lab
*Semester 2: Core Programming & Math*
1. *Mathematics-II* (Probability, Statistics)
2. *Data Structures and Algorithms* (Arrays, Trees, Graphs)
3. *Database Management Systems* (SQL, Relational Algebra)
4. *Discrete Mathematics* (Sets, Logic, Combinatorics)
5. *Technical Communication*
*Lab*: SQL Lab, Data Structures Implementation (Python/C++)
*Semester 3: Data Science Fundamentals*
1. *Mathematics-III* (Multivariate Calculus, Optimization)
2. *Object-Oriented Programming* (Java/C++)
3. *Statistical Methods for Data Science* (Hypothesis Testing, Regression)
4. *Operating Systems* (Process Management, File Systems)
5. *Data Visualization* (Matplotlib, Tableau, Power BI)
*Lab*: Statistical Analysis (R/Python), Visualization Projects
*Semester 4: Machine Learning & Engineering*
1. *Introduction to Machine Learning* (Supervised/Unsupervised Learning)
2. *Big Data Technologies* (Hadoop, Spark, MapReduce)
3. *Web Technologies* (APIs, RESTful Services)
4. *Linear Algebra for Data Science* (Matrix Operations, Eigenvalues)
5. *Software Engineering* (Agile, DevOps Basics)
*Lab*: ML with Scikit-learn, Hadoop/Spark Cluster Setup
*Semester 5: Advanced Analytics & Systems*
1. *Deep Learning* (Neural Networks, TensorFlow/PyTorch)
2. *Data Engineering* (ETL Pipelines, Airflow, Kafka)
3. *Cloud Computing* (AWS/Azure/GCP, Serverless Architectures)
4. *Time Series Analysis* (ARIMA, Forecasting)
5. *Elective-I* (e.g., Natural Language Processing)
*Lab*: Cloud Deployment Lab, End-to-End ML Pipeline Projects
*Semester 6: Big Data & AI Applications*
1. *Big Data Analytics* (Hive, HBase, NoSQL Databases)
2. *Reinforcement Learning* (Q-Learning, Policy Gradients)
3. *Distributed Systems* (Scalability, Consistency Models)
4. *Business Intelligence* (Dashboarding, Decision Trees)
5. *Elective-II* (e.g., Computer Vision)
*Lab*: Real-Time Analytics (Kafka Streams), AI Model Deployment
*Semester 7: Specialization & Capstone Projects*
1. *AI Ethics and Governance* (Bias, Fairness, GDPR)
2. *Advanced Data Engineering* (Data Lakes, Delta Lake)
3. *Elective-III* (e.g., Blockchain for Data Security)
4. *Elective-IV* (e.g., IoT Data Analytics)
5. *Capstone Project-I* (Industry Problem Solving, e.g., Predictive Maintenance)
*Lab*: MLOps (CI/CD Pipelines), Ethical AI Auditing Tools
*Semester 8: Industry Integration*
1. *Industrial Internship* (6–8 Weeks in Data-Driven Firms)
2. *Capstone Project-II* (Thesis on Real-World Dataset, e.g., Healthcare Analytics)
3. *Professional Ethics*
4. *Elective-V* (e.g., Quantum Machine Learning)
*Electives (Sample)*
- *Advanced NLP* (Transformers, BERT)
- *Robotic Process Automation (RPA)*
- *Financial Data Analytics*
- *Geospatial Data Science*
- *Recommender Systems*