B.Tech in Artificial Intelligence (AI) Engineering
*Semester 1: Foundation Basics*
1. *Mathematics-I* (Calculus, Linear Algebra)
2. *Programming Fundamentals* (Python, C/C++)
3. *Introduction to AI* (History, Applications, Ethics)
4. *Digital Logic Design* (Boolean Algebra, Circuits)
5. *Communication Skills*
6. *Environmental Science*
*Lab*: Python Programming Lab, Basic Robotics (Arduino/Raspberry Pi)
*Semester 2: Core Programming & Math*
1. *Mathematics-II* (Probability, Statistics)
2. *Data Structures & Algorithms* (Arrays, Trees, Graphs)
3. *Object-Oriented Programming* (Java/C++)
4. *Physics for AI* (Sensors, Actuators, IoT Basics)
5. *Discrete Mathematics* (Logic, Combinatorics)
*Lab*: Algorithm Implementation, Sensor Data Collection
*Semester 3: AI Fundamentals*
1. *Mathematics-III* (Multivariate Calculus, Optimization)
2. *Introduction to Machine Learning* (Regression, Classification)
3. *Database Systems* (SQL, NoSQL, MongoDB)
4. *Computer Organization* (CPU, GPU Architecture)
5. *Signals and Systems* (Time/Frequency Domain)
*Lab*: ML with Scikit-learn, SQL/NoSQL Projects
*Semester 4: Machine Learning & Robotics*
1. *Linear Algebra for AI* (Matrix Operations, Eigenvectors)
2. *Deep Learning Basics* (Neural Networks, TensorFlow/PyTorch)
3. *Robotics Fundamentals* (Kinematics, Sensors, ROS)
4. *Operating Systems* (Process Management, Threading)
5. *Ethics in AI* (Bias, Fairness, GDPR)
*Lab*: Neural Network Implementation, ROS Simulations
*Semester 5: Advanced AI & Applications*
1. *Natural Language Processing* (NLTK, Transformers, BERT)
2. *Computer Vision* (OpenCV, CNNs, YOLO)
3. *Reinforcement Learning* (Q-Learning, Policy Gradients)
4. *Cloud Computing* (AWS/Azure, AI Model Deployment)
5. *Elective-I* (e.g., *Generative AI*: GANs, Diffusion Models)
*Lab*: NLP Chatbots, Object Detection Projects
*Semester 6: AI Systems & Specialization*
1. *AI for Robotics* (SLAM, Path Planning)
2. *Big Data Analytics* (Spark, Hadoop, Kafka)
3. *Distributed AI Systems* (Edge AI, Federated Learning)
4. *AI in Healthcare/Finance* (Case Studies)
5. *Elective-II* (e.g., *Autonomous Vehicles*: Perception, Control)
*Lab*: Edge AI Deployment, Industry-Specific AI Projects
*Semester 7: Capstone Projects & Research*
1. *AI System Design* (MLOps, CI/CD Pipelines)
2. *Advanced Topics* (Quantum Machine Learning, AI Safety)
3. *Elective-III* (e.g., *AI for Cybersecurity*)
4. *Elective-IV* (e.g., *AI in Gaming*: Unity ML-Agents)
5. *Capstone Project-I* (Industry Problem, e.g., Predictive Maintenance)
*Lab*: Full-Stack AI Solutions, Ethical AI Audits
*Semester 8: Industry Integration*
1. *Industrial Internship* (6–8 Weeks at AI Labs/Startups)
2. *Capstone Project-II* (Thesis: e.g., AI-Driven Drug Discovery)
3. *Professional Ethics*
4. *Elective-V* (e.g., *AI Policy & Regulation*)
*Electives (Sample)*
- *AI for Climate Science*
- *Swarm Intelligence*
- *AI in Agriculture*
- *Neuromorphic Computing*
- *AI-Driven Art & Creativity*